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Abstract 

We give a new categorical definition of the associated sheaf fimctor for a Lawvere-Tiemey 
topology in a topos. Although the existence of such a fun&or is well known, the construction 
presented here does not resemble any other in the literature and it seems simple enough to 
deserve mention. We give direct comparisons with other presentations. @ 1998 Elsevier Science 
B.V. All rights reserved. 

1991 Math. Subj. Class.: 18A40, 03G30, 68Q55 

Fix an object S in a Cartesian closed category C, and consider the following definition 

of S-replete object, see [8, 9, 161: an object Z is S-replete if for every f : A --+ B in 

C such that Sf : SB -+ SA is iso, one has that for every CI : A --) Z there is a unique 

fl:B + Z such that 

f 
A-B 

One would read it as saying that Z has the unique extension property with respect 

to all those maps which S “believes” are isomorphisms. It is then clear that if C is 

a topos, and one picks S as the object Qj of j-closed truth values for j : 52 --+ Sz a 

topology on C, then the S-replete objects are exactly the j-sheaves. 

In the following, we apply some known results about repleteness to produce yet an- 

other presentation for the associated sheaf fun&or, see [2,3,5-7,10,11,13,14, 
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17-201. It is certainly a well-known construction, but the one we present has a 

crucial difference from all the others: the sheaf associated to X is carved out of its 

double dual l$T, where X appears in the covariant position. This gives the possibility 

to prove the reflection preserves monos (hence equalizers) without invoking injectivity 

in a different fashion from [lo]. 

In the next section, we define the reflection and prove the preservation of monos. 

Then we recall the general steps which give left exactness of the reflector, and draw 

some comparisons with the work of Freyd and others. 

1. The associated sheaf 

P 
Suppose C is an elementary topos and S = G?j s 52 is the retract of j-closed 

i 
truth values for a topology j on Q. Consider the adjunction (.Q-‘)“p + a$-‘. Follow- 

ing the common custom of writing PX for the power object @, we shall also write 

PjX for q as this represents j-closed subobjects of X in C. Let hx : X + Pj’x = 
Pj(Pi(X)) be the unit obtained by transposing the twisted evaluation. First note that 

Lemma 1. X is a j-sheaf if and only if hx : X -+ PjX is a j-closed mono. 

Proof. If hx is closed, then X is a sheaf as a closed subobject of a sheaf. Conversely, 

just note that if Z is a sheaf, then the singleton map factors with s:Z w PjZ which is 

closed as mono between sheaves. Then hZ is (closed) manic as first factor of a closed 

mono in the diagram: 

The definition of the reflection is now forced on us: for X in C take aX to be the 

j-closure of the image of hx :X + PTX. Let ux : X -+ aX be the factor of hx. It is 

immediately seen that the assignment a is a functor and r] is a natural transformation. 

Moreover, 

Theorem 2. For every j-sheaf Z, and every f : X + Z there is a unique g : aX + Z 
such that 

‘Ix X-aX 
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Hence, a is the rejection of C into the full subcategory of j-sheaves. Moreover, a 
preserves monos. 

Proof. Existence of g follows from the fact that q is natural and Lemma 1. Uniqueness 

follows from the fact that vx has a j-dense image. As for the final part, note that if 

m :X H Y in C, then Pjm : P;X H Pi” Y since Pjm : PjY + PjX is epic: in fact split, 

as appears in 

Therefore, a(m) : ~2’ + aY is manic as seen in the commutative diagram: 

, 

00 I I Ffm 
aY> 

kr ) 
$Y* cl 

2. Comparisons 

The simplest argument to show that a is left-exact is in [7] and goes as follows: 

(1) a preserves products as shj(C) c C is an exponential ideal. 

(2) a preserves equalizers because it preserves monos; given a pullback of monomor- 

phisms, take its pushout. The connecting map given by universality is manic. Hence, 

the reflector takes this to a pushout of monos (which is also a pullback) prolonged 

with another mono to produce a pullback. 

Note that the proof in [7] makes no reference to the actual description of the associ- 

ated sheaf functor. Since preservation of monos is ensured also by the fact that the 

inclusion shj(C) c C preserves injective objects; indeed, these are retracts of powers 

of Szj, hence of powers of 52. 

It is possible to prove directly that pullbacks of monos are preserved as follows: ap- 

plying Q;-) to such a pullback gives an absolute pushout of split epis. The 

result obtained by Pare in [ 151 yields the desired pullback. 

This leads to [12], where the idempotent monad induced by the 

($-‘)“P --I Ql-’ is considered, see also [4]. 

Given a monad (T, q, p) on a category C with equalizers, the equalizer 

monadic@ 

adjunction 
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is the underlying functor of another monad on C. The following is a remark attributed 
to Bkouche in [4]: the monad induced on Q is idempotent if and only if 7% : TQ + T2 

is manic. The proof is by diagram chasing. That is also equivalent to the fact that the 
category of Q-algebras is equivalent to the full subcategory of C on those objects A 
which appear in an equalizer diagram of the form 

f 

A - TX = TY, 
g 

see also [I, 31. 
Thus, in the case T = Pi one obtains a description of the associated sheaf as the 

equalizer of the fork 

as $-’ takes monomorphisms to retractions. 
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